
AN ELECTRONIC JOURNAL OF THE

SOCIETAT CATALANA DE MATEMÀTIQUES

Óscar Rivero Salgado

Universitat Politècnica de
Catalunya

rversal@hotmail.com

∗Pol Torrent i Soler

Universitat Politècnica de
Catalunya

ptorrent@me.com

∗Corresponding author

Resum (CAT)
En aquest article proposem millores al mètode Erik+2, que s’empra per obtenir la

distribució de les espècies a les fulles d’un arbre filogenètic, suggerint solucions als

problemes provocats per la falta de dades experimentals quan es tracta amb un

nombre elevat d’espècies. Presentem una nova tècnica per calcular les puntuacions

assignades a cada distribució que es basa en aplicar successivament el mètode

Erik+2 tenint en compte les files i columnes més plenes de la matriu de dades

observades i compensant les puntuacions obtingudes per files i per columnes

segons les dimensions de la matriu. Segons aquestes dimensions també proposem

normalitzacions de les puntuacions obtingudes.

Abstract (ENG)
We aim to improve the Erik+2 method for obtaining the right distributions at the

leaves of a phylogenetic tree, by addressing the problems that are due to the lack

of enough experimental data when dealing with a high number of species. We

introduce a new procedure based on successive applications of the Erik+2 method

to take into account the most filled rows and columns of the observed data matrix

and on balancing the scores obtained from both rows and columns. We also propose

normalizations to compare the scores based on the dimensions of the data matrix.

Keywords: Phylogenetics, Flattening
matrix, Erik+2 Method.
MSC (2010): 92D15, 60J20.
Received: September 17th, 2015.
Accepted: October 29th, 2015.

Acknowledgement
The authors would like to thank Marta

Casanellas for her vital guide and support

while working on this project.

11http://reportsascm.iec.cat Reports@SCM 2 (2016), 11–20; DOI:10.2436/20.2002.02.7.

Some improvements to the Erik+2
method for unbalanced partitions

http://reportsascm.iec.cat

Improvements to the Erik+2 method

1. Introduction

Phylogenetics is a classical branch of science whose main aim is to determine evolutionary relationships
between species. We typically have DNA sequences from genes of the different species we are studying and
the classical approach would be to perform some kind of statistical analysis to determine the tree that fits
the best to our data. However, in recent years, the use of tools from algebraic geometry have let to obtain
a great progress in this field: we could talk about a new branch, phylogenetic algebraic geometry, that
would study algebraic varieties representing statistical models of evolution, mixing that way mathematics,
statistics, biology and computation. We take as our starting point the approach of Nicholas Eriksson and
others, that uses the computation of the singular value decomposition of a matrix to study the distance to
a particular algebraic variety. In recent years, Marta Casanellas and Jesús Fernández-Sánchez developed an
improved version, Erik+2, that leaded to better results in the case of four species. Now, we try to extend
their idea to the case of more species (here we work with the case of 12), having the necessity of doing
some ponderations during the process concerning the size of the submatrices to obtain a result that, and
even though our result is not optimal, provides some good approaches.

2. Background

The evolution of species is usually modeled in a phylogenetic tree T . The leaves of the tree represent current
species and the root the common ancestor. The aim of phylogenetics is to determine the phylogenetic tree
of a set of species from the DNA sequences of current species. Due to its structure, we can deal with DNA
sequences as if they were a sequence of nucleotides (A, C, G, T). For this reason, we need a statistical model
for the substitutions of nucleotides to face our problem. We will work under the following assumptions:

(i) the trees are binary (which means that two branches come out of the root, if it exists, and that they
are divided into another two branches in each node);

(ii) the processes in each branch do only depend on the common father node;

(iii) mutations of the DNA chain occur randomly;

(iv) each position of the DNA sequence evolves independently and under the same mutation probabilities;
this means it is enough to model one position of the chain.

Following these assumptions we can think the nucleotide mutation process as a Markov process by
assigning to each edge e a transition matrix

Se =

P(A | A, e) P(C | A, e) P(G | A, e) P(T | A, e)
P(A | C, e) P(C | C, e) P(G | C, e) P(T | C, e)
P(A | G, e) P(C | G, e) P(G | G, e) P(T | G, e)
P(A | T, e) P(C | T, e) P(G | T, e) P(T | T, e)

 ,

where P(I | J, e) is the probability of the nucleotide in the father node J becoming I after the edge e. These
entries are unknown and along with the distribution in the root π = (πA,πC,πG,πT) are the parameters of

http://reportsascm.iec.cat12

http://reportsascm.iec.cat

Óscar Rivero Salgado, Pol Torrent i Soler

Figure 1: A example of an unrooted 4-leaf phylogenetic tree.

our model. By imposing conditions on the matrix Se , one obtains different models. We deal with the most
general Markov model; see [4].

We define now the random variables Xi as the state of the leaf i for i ∈ {1, ... , n} so that Xi takes values
in {A, C, G, T} = K, where n is the number of leaves of the tree. Now let px1x2···xn = P(X1 = x1, ... , Xn = xn)
be the joint distribution at the leaves of the tree. Those probabilities can be calculated using only the
entries of the transition matrices.

We are now ready to state the main definition and the main theorem we will need to understand Erik+2
method.

Definition 2.1. Let A|B be a partition of the leaves (that is, if L(T) is the set of leaves of the rooted tree
T then L(T) = A ∪ B and A ∩ B = ∅), where we also assume that A and B are ordered sets. Then we
define the flattening matrix flatA|B of a joint distribution vector p associated to the partition A|B as the

4|A| × 4|B| matrix

flatA|B(p) =

pAA···AA pAA···AC pAA···AG · · · pAA···TT
pAC···AA pAC···AC pAC···AG · · · pAC···TT
pAG···AA pAG···AC pAG···AG · · · pAG···TT

...
...

...
. . .

...
pTT···AA pTT···AC pTT···AG · · · pTT···TT

 .

That is, each column of the flattening matrix corresponds to a state of the leaves in B and each row to a
state of the leaves in A. We will call such a partition an edge split if we can remove an edge such that all
the leaves in A are in the same connected component and all the leaves in B are in the other one, and we
will refer as the size of the partition to the pair (|A|, |B|) (though we will usually write it as |A| × |B|).

For instance, in the previous example 12|34 is an edge split partition, while 13|24 is not. Now we are
ready to state the following result.

Theorem 2.2 ([1, 2]). Let A|B be a partition of the set of leaves of the tree T and let p be the joint distri-
bution at the leaves of T for certain parameters. If that partition is an edge split, then rank flatA|B(p) ≤ 4,
whereas if it is not an edge split partition and the parameters are general enough and |A|, |B| > 1, then
rank flatA|B(p) > 4.

For the case with n = 4 species at the leaves if the parameters are “general enough”, one can show
that the rank of the flattening matrix for partitions which are not an edge split is maximum (i.e., 16) but,
since we will be dealing with cases with n = 12, we cannot assume this as true (cf., [1]).

13Reports@SCM 2 (2016), 11–20; DOI:10.2436/20.2002.02.7.

Improvements to the Erik+2 method

2.1 The Erik+2 method

We start off with a set of ordered nucleotide sequences (one for each leaf in our tree, as they are the
observed DNA chains of current species) which we will assume that have no gaps and have all the same
length. We think of this set of nucleotide sequences as an alignment, that is, nucleotides at the same
position of the different sequences are supposed to have evolved from the same nucleotide of the common
ancestor.

From this experimental data we can calculate the relative frequencies p̃x1x2···xn , which we will use as
estimators for the true probabilities px1x2···xn (in fact it can be shown that those are the maximum likelihood
estimators for the true probabilities, see [3]). Given a partition of the leaves A|B, we can build the estimated

flattening matrix fl̃atA|B just like we did above, but this time using the relative frequencies instead of the
true probabilities. We aim to determine the right topology of the tree (i.e., to determine which species
is at each leaf) by studying which partitions of the leaves are an edge split according to the experimental
data and which are not.

By the theorem we stated above, if that matrix was exactly the flattening matrix we should be able to
distinguish between edge splits and the other ones because edge splits would have exactly rank 4 or less
and the other ones would not. This could be done easily by checking whether all 5 × 5 minors vanish or
not, but since we only have the estimated matrices we have to develop a method to decide which one is
“closer” to rank 4 matrices and to do so we will take the distance induced by the Frobenius norm.

Lemma 2.3. If M is an m × n matrix and {σi} are its singular values (ordered from big to small), the
Frobenius distance of M to V (the set of rank 4 or lower matrices) in the Frobenius norm is

d(M,V) =

min{m,n}∑
i=5

σ2i .

The ErikSVD method (see [1]) uses this fact to give a score to each flattening matrix. Indeed, it works
as follows: given an alignment and a partition A|B, it computes the estimated flattening matrix and then

it obtains the singular value decomposition of the matrix and computes the distance d(fl̃atA|B ,V) which is
the score assigned to the partition. Hence the partition which is estimated to be an edge split is the one
having the lowest score.

The Erik+2 method (see [3]) slightly modifies the previous procedure by taking into account that the
rank of the flattening matrix could be affected by the presence of long-branch attraction situations. The
solution given by the Erik+2 method is to normalize first rows and then columns so each one sums up to
1. Scores obtained after normalizing by both rows and columns are taken into account to compute the
final score.

One has to take into account that if we are dealing with a case with n = 4 then the flattening matrices
for 2× 2 partitions will have dimension 16× 16. But in our case we used the algorithm to treat cases with
12 species, which leads to flattening matrices with dimensions 42× 410 for 2× 10 (actually the dimensions
of the matrix we were dealing with computationally were about 16× 60000 since we were only taking into
account nonempty rows and columns) and 45 × 47 for 5× 7 partitions. This explains why alignments with
size 100000 work fine with 4 species but often are not enough to fill bigger flattening matrices so as to
give a closer approach to the theoretical situation.

Since the number of singular values depends on the dimensions of the matrix and these dimensions
depend on the cardinal of the subsets that form the partition, another interesting point is to ensure that

http://reportsascm.iec.cat14

http://reportsascm.iec.cat

Óscar Rivero Salgado, Pol Torrent i Soler

we can compare scores obtained from partitions whose subsets have different cardinals (and hence their
flattening matrices have different dimensions).

3. Our proposed modifications

In this section we describe some of the most successful modifications out of the ones we tried. We start
off with the observation that for the 2 × 10 sized partitions the flattening matrices have lots of columns
which contain a single element due to the lack of data and that this fact can easily alter the rank of the
matrix. Since the theoretical model stated that we should be dealing with matrices of rank approximately
4, we conjectured that there should be an important amount of data in a few rows and columns.

First of all we looked at how data should be distributed if the alignment was completely random (in
this paper we will always assume that a random alignment is an alignment such that the distribution of its
columns is uniform) to compare it to the actual flattening matrices. The following lemmas will allow us to
make those estimations.

Lemma 3.1. In a randomly generated alignment of length n, the expected number of nonempty columns
of a flattening matrix of c columns is

an = −c

(
c − 1

c

)n

+ c .

Proof. We can easily build a recurrence by noticing that, when we have an alignment of length i , then
ai+1 is simply the probability of the new datum being on an already occupied column times the current
number of occupied columns plus the probability of it being on an empty column times the current number
of occupied columns plus one. Noticing that the number of currently occupied columns is ai (so ai+1 can
only take the values ai and ai + 1 each one with its probability) we can write

ai+1 = P(new datum is in occupied column) · ai + P(new datum not in occupied column) · (ai + 1) =

=
c − ai

c
(ai + 1) +

ai
c

ai .

Simplifying, one obtains cai+1 − (c − 1)ai = c . Then, we just need to resolve the recurrence. Putting it
in an homogeneous form we obtain cai+2 − (2c − 1)ai+1 + (c − 1)ai = 0 so, the characteristic polynomial
has roots 1 and (c − 1)/c and we get a solution of the form

an = α

(
c − 1

c

)n

+ β.

By setting initial conditions one obtains the result.

Lemma 3.2. In a randomly generated alignment of length n, the expected number of columns with a
single matrix of a flattening matrix of c columns is

bn = an

(
an − 1

an

)n−an
,

where an is defined as in the previous lemma.

15Reports@SCM 2 (2016), 11–20; DOI:10.2436/20.2002.02.7.

Improvements to the Erik+2 method

Proof. We have that an columns are occupied so we can focus in the case where each one of them has a
single entry and that we have n − an data left to distribute. Since having a single entry is now equivalent
to not getting any of those remaining data, we can apply the previous lemma with n = n− an and c = an,
so the number of occupied columns is now

X = −an

(
an − 1

an

)n−an
+ an,

and the number of not occupied (and hence with a single entry) columns an−X is the one stated above.

Assuming alignments of size 105 as the ones we had, we obtained, for instance, that for the 2 × 10
partition there would be on average 95380 nonempty columns, where 90869 of them have only one entry.
The actual matrices have about 60000 nonempty columns, 40000 of them having a single entry, hence
dispersion is lower than in the random model but not much lower. For 5× 7 partitions, we observed that
random matrices have entries in almost all columns (we computed an average of 16347 nonempty columns
out of 47 = 16384 possible, and we expected that just 98 columns had one entry). In this case we observed
that, on average, we had 9000 nonempty columns so dispersion was also lower than in the random case.
This data is obtained from the following lemmas and completed in table 1.

Partition Number of columns Expected nonempty Expected single entry

2 vs 10 410 = 1048576 95380 90869
3 vs 9 49 = 262144 83137 67874
4 vs 8 48 = 65536 51287 19837
5 vs 7 47 = 16384 16347 98

Table 1: Expected number of nonempty columns and columns with a single entry assuming alignments of
length n = 105.

We can also use recurrences to estimate the number of entries in the most populated rows. To normalize,
we will need to look at the number of entries at the most populated half according to our proposed method
that will be explained below (since the most populated half has a greater weight in the final score). Taking
into account that half, we will look at how many entries we have in the most populated sub-half, and so
on (this works since the number of rows is always a power of 2). We will treat the problem of determining
the number of entries in the most populated half as the problem of looking for the expected cardinality of
the most populated half (tails or heads) when we toss n times a coin (this is equivalent to our problem
since the data distribution is uniform). Let cn be that number. Clearly c1 = 1 and cn = cn−1 + 1/2 if n is
even (since the new coin will result in the result which is currently most frequent with probability 1/2), and
if n is odd we see that cn is 1/2 plus the previous number of coins in the most populated half, as before,
but we have to take into account the existence of draws by adding an extra term that takes care of this
probability, resulting in

cn = cn−1 +
1

2
+

1

2

(n−1
(n−1)/2

)
2n−1

,

for odd n. By Stirling’s approximation we get

cn ≈ cn−1 +
1

2
+

1√
2π(n − 1)

http://reportsascm.iec.cat16

http://reportsascm.iec.cat

Óscar Rivero Salgado, Pol Torrent i Soler

so, for n big enough, by adding up both results we get

cn ≈
n + 1

2
+

1

2
√
π

(n−1)/2∑
i=1

1√
i

 .

We also looked with detail to some cases and found out the following patterns for flattening matrices
coming from an edge split. They usually (respect to flattening matrices not coming from a partition which
is an edge split) have a lower amount of nonempty rows and columns, have less rows and columns with
only 1 entry, and have more entries in the most populated rows.

This led us to think that it would be convenient to reorder rows and columns according to their number
of entries, in order to have the most populated (and hence most significant) rows and columns in the first
place. Then we consider the sub-matrices obtained by taking the m rows and the first k columns, where
m is the number of rows of the matrix and k is a parameter of the method (we used k = 1000). We
apply the Erik+2 method to those sub-matrices and then we extend the sub-matrix with k more columns,
compute the score again and so on, and finally we add up all the scores. In order to compare the scores
between partitions of different size, it is convenient to divide the score by the number of total SVDs done.
However, when dealing with partitions of the same size, this does not help since it would decrease the score
for wrong matrices which usually have more nonempty columns.

We also considered to do an analogous procedure for both rows and columns, i.e., considering sub-
matrices of size k1 × k2, and then increase both k1 and k2 but, since we are usually dealing with matrices
which have m� n, we did not see a significant improvement of the results. Due to this fact we also need
to multiply by m the score obtained by normalizing the columns, and by n the score obtained by normalizing
the rows, in order to have the same order of magnitude.

Since we are adding up scores of matrices with different dimensions, the next step is to give estimates
for the value of those scores so we can normalize. If we have an m × n matrix and we normalize the rows
so as the elements of each row sum up to 1, we get√∑∑

a2ij
mn

≥
∑∑

aij
mn

=
m

mn
=

1

n

since each row adds up to one (we assume that in each row there is at least one entry since the method
does only take into account nonempty rows). We obtain√∑∑

a2ij ≥
√

m

n
=⇒ n

√∑∑
a2ij ≥

√
mn

and, by symmetry, we obtain the same result when we normalize columns and multiply by m. To get an
upper bound notice that, since (

∑
bi)

2 = 1 (where the bi are elements of a row or a column which has

been normalized), we obtain
∑

b2
i ≤ 1. By proceeding this way, we get

√∑∑
a2ij ≤

√
m and, multiplying

by n and arguing analogously for rows and columns, we finally get that

n · rownorm + m · colnorm ∈ [2
√

mn, (
√

m +
√

n)
√

mn].

The experimental results tell us that neither of those bounds is sharp enough.

17Reports@SCM 2 (2016), 11–20; DOI:10.2436/20.2002.02.7.

Improvements to the Erik+2 method

We try another approximation: assuming êi = e/m where e is the total number of entries of the matrix
and êi is an estimator for the number of entries in a row then, for the ML estimator properties (we can

view that estimator as an estimator for a binomial distribution), ˆ1/ei = m/e. This way we see that there
is approximately one datum for each one of the ei entries and we have√∑∑

a2ij =

√∑ 1

e2i
ei =

√∑ 1

ei
∼
√∑ m

e
=

√
m2

e
=

m√
e

.

Hence, after multiplying by n, we get a value of mn/
√

e (the value obtained for the other normalization is
the same, by symmetry). These are in good agreement with this value so it results a nice normalization.
This is the expected value for a random matrix which has only ones at e � mn, but not a bound (as the
matrix gets further away from the random model, the value gets also more different from this one).

This normalization is interesting because it makes the sub-scores of the sub-matrices have similar values
as we increase the number of rows of the sub-matrices instead of having an increasing sequence as we prove
in the following lemma.

Lemma 3.3. Consider the sequence of values (xn) corresponding to the Frobenius norm of the matrix
obtained by taking into account the first n columns, and then normalizing by rows and columns. For n
sufficiently big, (xn) becomes increasing.

Proof. If we normalize by columns, the result follows trivially since the other columns remain unchanged
and we add a new positive term to the computation of the norm. If we normalize by rows, it suffices to
show that, if the matrix has s data in the row and the new column adds d data, then√∑

a2i
s2
≤

√∑
a2i + d

(s + d)2

which is equivalent to
∑

a2i ≤ ds2/(2sd + d2). By using the inequality between the arithmetic mean and
the quadratic mean, we get ∑

a2i ≤
∑

ai
n

=
s

n

so we need
s

n
≤ ds2

2ds + s2
⇐⇒ s ≥ d

n − 2
,

which is true for n big enough (and in general for our matrices n will almost always be big enough).

After this discussion, since dispersion is high, we assume that our data will be closer to the random
model and hence the score we assign to a m × n sub-matrix is the following (the overall score is obtained
after adding up all the scores given to sub-matrices):

score(M) =
n · rowscore + m · colscore

mn/
√

e
. (1)

After computing the overall score, we can divide by either the number of SVDs done (so as to compare
our score to scores coming from partitions with different size) or by the expected number of SVDs for that
size of the partition, in order to keep a penalty to flattening matrices which require a higher number of
SVDs, because they have a higher number of columns.

http://reportsascm.iec.cat18

http://reportsascm.iec.cat

Óscar Rivero Salgado, Pol Torrent i Soler

4. Performance tests for several methods

To test the performance of our method and to compare it to the original Erik+2 method, we considered a
set of 100 data files corresponding to trees with 12 leaves with the same topology but with random branch
lengths. For every data set, we obtained the scores for 9 partitions, 3 of size 2× 10, 3 of size 3× 9 and 3
of size 5× 7, where one partition of each size was an edge split and the rest were not.

The following tables 2 and 3 contain the information of the performance (success1 and scores assigned
to both edge splits and other partitions) for the methods corresponding to the following scores: sc1 is
the number of nonempty rows of the flattening matrix, sc2 is the number of nonempty columns of the
flattening matrices, sc3 is the original Erik+2 score, sc4 the Erik+2 score using the mn/

√
e normalization,

sc5 the score given by the variant of our method2 without dividing by the number of SVDs computed, sc6
the score given by our method taking the arithmetic mean of the scores obtained for each sub-matrix, and
sc7 the score of our method taking a pondered mean of the sub-scores.

Partition sc1 sc2 sc3 sc4 sc5 sc6 sc7
2 vs 10 100 64 33 40 70 65 67
3 vs 9 100 50 39 31 42 35 36
5 vs 7 97 76 58 21 47 24 26

Table 2: Percentage of success of the different methods (where each method is represented by its score).

Partition sc1 sc2 sc3 sc4 sc5 sc6 sc7
2 vs 10 (ES) 16 57418 3209 181 9972 176 177
2 vs 10 (NES) 16 59347 3206 181 10502 179 183

3 vs 9 (ES) 62 38453 13926 296 10929 291 291
3 vs 9 (NES) 64 39422 14396 293 11134 288 288

5 vs 7 (ES) 890 8745 75489 589 4530 620 677
5 vs 7 (NES) 954 9816 87601 560 4814 584 638

Table 3: Average of the score given to edge splits (rows labelled with (ES)) and to partitions which are
not edge splits (labelled with (NES)) by each method.

5. Conclusions

We can see that our method (score 5) works significantly better than the original Erik+2 method for 2 vs
10 partitions, since it recognizes the edge split of the three partitions 70 out of 100 times, and the original
method worked fine only 33% of the time. This could be explained by the fact that the Erik+2 method

1We consider a test successful if the score the method assigned to the edge split is lower or equal than the score it assigned
to two partitions which were not an edge split of that size. Notice that with our data set we could make 100 test for each size.

2We will refer as “our method” to the method that implements the modifications proposed above: reorder rows and
columns, consider sub-matrices formed by the first ik columns in the i-th iteration, compute the score for each sub-matrix
using (1) and add up all the scores, resulting in score 5. Scores 6 and 7 slightly modify this method by taking the mean of the
sub-scores.

19Reports@SCM 2 (2016), 11–20; DOI:10.2436/20.2002.02.7.

Improvements to the Erik+2 method

computes a single SVD where only 16 singular values are obtained (notice that the Erik+2 method is more
accurate as the partition is more balanced), and that the dispersion present in flattening matrices coming
from unbalanced partitions fits nicely with the assumptions we made to obtain the mn/

√
e normalization.

For the 3 vs 9 case, our method turns out to be slightly better but not significantly; neither the original
method nor ours provided a satisfactory result, so we think new ideas should be introduced to deal with
this problem. In the 5 vs 7 case the most effective score turns out to be the original Erik+2 method, but we
should notice that the percentage of success in taking the score as simply the number of columns is really
high and the averaged difference of columns between edge splits and the other partitions is percentage-wise
the most significant. The score sc1 is not reliable for unbalanced partitions as the number of rows of
the flattening matrices of unbalanced partitions is small and almost never there is an empty row (we can
see in table 3 that, for 2 vs 10 and 3 vs 9 partitions, that averages for both edge splits and the rest of
partitions are really close to 16 and 64, the number of rows of the flattening matrices). Nevertheless, when
we consider balanced partitions (e.g., 5 vs 7) and hence the number of rows of the flattening matrices is
higher, we can take it into account since for those cases the difference of scores between edge splits and
the other partitions is noticeable and it has a huge percentage of success.

We can also see that, while we have reduced the relative difference between scores when averaging
(although by doing this we are decreasing the percentage of success), those scores are not yet comparable.
A noticeable fact is that for the method that works better (without averaging) scores obtained for the first
two sizes are really close, but for the 5 vs 7 it reduces to less than one half (this is due to the fact that
we make much less SVDs, as one can see looking at the averaged score), while for the original Erik+2 the
score shows a steady increasing trend when the partition gets more balanced. We should also note that
we worked estimations for the norm of the matrix and not for the distance to rank 4 flattening itself (they
differ in the square of the first 4 singular values) and this could affect the success of our method in some
cases.

References

[1] N. Eriksson, “Tree construction using singu-
lar value decomposition”, in Algebraic Statistics
for computational biology, 347–358, Cambridge
University Press, New York, 2005.

[2] M. Casanellas and J. Fernández-Sánchez, “Rel-
evant phylogenetic invariants of equivariant
models”, J. de mathématiques Pures et Ap-
pliquées 96 (2010), 207–229.

[3] J. Fernández-Sánchez, M. Casanellas, “Invari-
ant versus quartet inference when evolution is
heterogeneous across sites and lineages”, Sys-
tematic Biology (2015), to appear.

[4] E. Allman, J.A. Rhodes, “Phyogenetic ideals
and varieties for the general Markov model”,
Adv. in Appl. Math. 40 (2008), 127–148.

http://reportsascm.iec.cat20

http://reportsascm.iec.cat

	Introduction
	Background
	The Erik+2 method

	Our proposed modifications
	Performance tests for several methods
	Conclusions

